Weighted Composition Operators from Logarithmic Bloch-Type Spaces to Bloch-Type Spaces
نویسندگان
چکیده
منابع مشابه
Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملWeighted Composition Operators from Logarithmic Bloch-Type Spaces to Bloch-Type Spaces
Recommended by Radu Precup The boundedness and compactness of the weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces are studied here.
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملWeighted composition operators from Bergman-type spaces into Bloch spaces
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
متن کاملgeneralized composition operators from logarithmic bloch type spaces to q_k type spaces
in this paper boundedness and compactness of generalized composition oper-ators from logarithmic bloch type spaces to q_k type spaces are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2009
ISSN: 1029-242X
DOI: 10.1155/2009/964814